History Of Operating Systems Details
he history of computer operating systems recapitulates to a degree the recent history of computer hardware.
Operating systems (OSes) provide a set of functions needed and used by most application programs on a computer, and the linkages needed to control and synchronize computer hardware. On the first computers, with no operating system, every program needed the full hardware specification to run correctly and perform standard tasks, and its own drivers for peripheral devices like printers and punched paper card readers. The growing complexity of hardware and application programs eventually made operating systems a necessity.
The earliest computers were mainframes that lacked any form of operating system. Each user had sole use of the machine for a scheduled period of time and would arrive at the computer with program and data, often on punched paper cards and magnetic or paper tape. The program would be loaded into the machine, and the machine would be set to work until the program completed or crashed. Programs could generally be debugged via a control panel using toggle switches and panel lights. It is said that Alan Turing was a master of this on the early Manchester Mark 1 machine, and he was already deriving the primitive conception of an operating system from the principles of the Universal Turing machine.
Symbolic languages, assemblers, and compilers were developed for programmers to translate symbolic program-code into machine code that previously would have been hand-encoded. Later machines came with libraries of support code on punched cards or magnetic tape, which would be linked to the user's program to assist in operations such as input and output. This was the genesis of the modern-day operating system. However, machines still ran a single job at a time. At Cambridge University in England the job queue was at one time a washing line from which tapes were hung with different colored clothes-pegs to indicate job-priority.
As machines became more powerful, the time to run programs diminished and the time to hand off the equipment to the next user became very large by comparison. Accounting for and paying for machine usage moved on from checking the wall clock to automatic logging by the computer. Run queues evolved from a literal queue of people at the door, to a heap of media on a jobs-waiting table, or batches of punch-cards stacked one on top of the other in the reader, until the machine itself was able to select and sequence which magnetic tape drives processed which tapes. Where program developers had originally had access to run their own jobs on the machine, they were supplanted by dedicated machine operators who looked after the well-being and maintenance of the machine and were less and less concerned with implementing tasks manually. When commercially available computer centers were faced with the implications of data lost through tampering or operational errors, equipment vendors were put under pressure to enhance the runtime libraries to prevent misuse of system resources. Automated monitoring was needed not just for CPU usage but for counting pages printed, cards punched, cards read, disk storage used and for signaling when operator intervention was required by jobs such as changing magnetic tapes and paper forms. Security features were added to operating systems to record audit trails of which programs were accessing which files and to prevent access to a production payroll file by an engineering program, for example.
he history of computer operating systems recapitulates to a degree the recent history of computer hardware.
Operating systems (OSes) provide a set of functions needed and used by most application programs on a computer, and the linkages needed to control and synchronize computer hardware. On the first computers, with no operating system, every program needed the full hardware specification to run correctly and perform standard tasks, and its own drivers for peripheral devices like printers and punched paper card readers. The growing complexity of hardware and application programs eventually made operating systems a necessity.
The earliest computers were mainframes that lacked any form of operating system. Each user had sole use of the machine for a scheduled period of time and would arrive at the computer with program and data, often on punched paper cards and magnetic or paper tape. The program would be loaded into the machine, and the machine would be set to work until the program completed or crashed. Programs could generally be debugged via a control panel using toggle switches and panel lights. It is said that Alan Turing was a master of this on the early Manchester Mark 1 machine, and he was already deriving the primitive conception of an operating system from the principles of the Universal Turing machine.
Symbolic languages, assemblers, and compilers were developed for programmers to translate symbolic program-code into machine code that previously would have been hand-encoded. Later machines came with libraries of support code on punched cards or magnetic tape, which would be linked to the user's program to assist in operations such as input and output. This was the genesis of the modern-day operating system. However, machines still ran a single job at a time. At Cambridge University in England the job queue was at one time a washing line from which tapes were hung with different colored clothes-pegs to indicate job-priority.
As machines became more powerful, the time to run programs diminished and the time to hand off the equipment to the next user became very large by comparison. Accounting for and paying for machine usage moved on from checking the wall clock to automatic logging by the computer. Run queues evolved from a literal queue of people at the door, to a heap of media on a jobs-waiting table, or batches of punch-cards stacked one on top of the other in the reader, until the machine itself was able to select and sequence which magnetic tape drives processed which tapes. Where program developers had originally had access to run their own jobs on the machine, they were supplanted by dedicated machine operators who looked after the well-being and maintenance of the machine and were less and less concerned with implementing tasks manually. When commercially available computer centers were faced with the implications of data lost through tampering or operational errors, equipment vendors were put under pressure to enhance the runtime libraries to prevent misuse of system resources. Automated monitoring was needed not just for CPU usage but for counting pages printed, cards punched, cards read, disk storage used and for signaling when operator intervention was required by jobs such as changing magnetic tapes and paper forms. Security features were added to operating systems to record audit trails of which programs were accessing which files and to prevent access to a production payroll file by an engineering program, for example.
History Of Operating Systems
History Of Operating Systems
History Of Operating Systems
History Of Operating Systems
History Of Operating Systems
History Of Operating Systems
History Of Operating Systems
History Of Operating Systems
History Of Operating Systems
History Of Operating Systems
History Of Operating Systems
History Of Operating Systems
History Of Operating Systems
History Of Operating Systems
History Of Operating Systems
History Of Operating Systems
History Of Operating Systems
History Of Operating Systems
History Of Operating Systems
History Of Operating Systems
History Of Operating Systems
No comments:
Post a Comment